
Cold-Start Playlist Generation on the Spotify Million Playlist
Dataset

Ozel Yilmazel, Samuel Lerner, Javin Mendiratta, Rishi Nandurbarkar, John Ryu

1 Abstract
Cold-start playlist generation is the task of automatically populating
a playlist given only its title. This task presents a fundamental chal-
lenge in music information retrieval in the absence of user listening
histories and due to the inherent vocabulary gap between playlist
titles and track metadata. In this work we investigate multiple novel
approaches, including transfer-based playlist initialization, multi-
stage re-ranking, and a hybrid single-stage retriever that combines
dense and lexical models. Our findings show the effectiveness of
these new approaches and explores possible efficiency trade-offs.
Additionally, we implement a new evaluation strategy to measure
the musical feature overlap of playlists and retrieved tracks that
captures semantic relevance instead of exact match of tracks.

2 Related Work
Automatic playlist continuation gained prominence through the
Spotify Million Playlist Challenge [6]. The winning vl6 system [4]
employed multi-stage retrieval with matrix factorization for dense
track-title representations followed by learning-to-rank re-ranking
with extracted features.Hello World! [5] introduced separate neu-
ral modeling of titles (via character-level CNN) and playlist contents
(via autoencoder), combining predictions linearly. Avito [3] simi-
larly used dual matrix factorization (playlist-track and playlist-title)
with re-ranking, demonstrating the effectiveness of modeling mul-
tiple modalities independently. Creamy Fireflies [1] showed that
carefully tuned classical collaborative and content-based recom-
menders with strategic post-processing can compete with complex
neural approaches.HAIR [7] achieved competitive performance
through neighbor-based collaborative filtering with refined similar-
ity functions and re-ranking, emphasizing efficiency over neural
complexity. Following the challenge survey [6], we adopt standard
evaluation metrics including precision and NDCG at various cut-
offs. These works collectively demonstrate that effective playlist
continuation relies on hybrid retrieval, multi-stage re-ranking, and
representation learning techniques, principles that inform our ap-
proach.

3 Problem Statement
This project addresses the task of cold-start playlist generation,
where the goal is to automatically create a relevant playlist given
only its title as input. Specifically, given a playlist title 𝑝 , the objec-
tive is to generate a ranked list of candidate songs that best match
the intended theme, genre, or mood, ideally producing the top 100
tracks.

Each song 𝑠 in the candidate pool is represented by a set of
textual attributes, such as its track name, artist name, and album
name. Using these features, we define a retrieval model 𝑀 that
assigns a relevance score between a playlist title and a song:

score(𝑠 | 𝑝) =𝑀 (𝑠, 𝑝)

The cold-start problem is especially challenging because we
lack listening histories or user-specific signals, and there’s often a
vocabulary gap between how tracks are named and how playlist
titles are phrased, making this a difficult benchmark task.

4 Proposed Approach
We explored three model architectures that build upon lexical base-
lines through enriched representations and multi-stage retrieval
strategies. All approaches utilize an extended text representation
for tracks, constructed by concatenating the titles of all playlists
containing each track in the training set. Formally, for a track 𝑠

appearing in playlists {𝑃1, 𝑃2, . . . , 𝑃𝑘 }, we define:

text(𝑠) = name(𝑠) ⊕ artist(𝑠) ⊕ album(𝑠) ⊕
𝑘⊕
𝑖=1

title(𝑃𝑖)

, where ⊕ denotes concatenation. To prevent data leakage, we
restrict {𝑃1, . . . , 𝑃𝑘 } to training playlists only. Additionally, we em-
ploy zero-shot GPT-5 to annotate each playlist title with genre and
thematic features (e.g., “chill,” “workout,” “indie rock”). For each
track 𝑠 , we aggregate features from all training playlists containing
it:

features(𝑠) =
⋃
𝑠∈𝑃𝑖

features(𝑃𝑖)

All implementations of our approaches were original and written
by our team.

4.1 Multi-Stage Re-ranker
This approach employs a two-stage pipeline combining lexical re-
trieval with learned re-ranking. In the first stage, we retrieve candi-
date tracks using Dirichlet prior query likelihood.

The top-1,000 retrieved tracks are then passed to a supervised
listwise LTR re-ranker trained on the following feature vector:

• Weighted Matrix Factorization Score: u⊤𝑝 v𝑠 , where u𝑝
and v𝑠 are learned embeddings of playlist and track respec-
tively in a shared latent space. This score comes from the
baseline approach in 5.1.3.

• SVD Score: Dot product uSVD𝑝 ·vSVD𝑠 from singular value de-
composition. This score comes from the baseline approach
in 5.1.3.

• Popularity Score: |{𝑃 : 𝑠 ∈ 𝑃}|, the number of playlists
containing 𝑠 . This score was pre-computed based on the
training set.

• BM25 Score: scoreBM25 (𝑠 | 𝑝) based on extended text rep-
resentation of the track. This score comes from the baseline
approach in 5.1.2.

• Dirichlet Score: scoreQL (𝑠 | 𝑝) from the first stage.
• Track Text Length: |text(𝑠) |.
• Track Duration: Length in milliseconds.
• Term Frequency:

∑
𝑤∈𝑝 tf(𝑤, 𝑠).

Ozel Yilmazel, Samuel Lerner, Javin Mendiratta, Rishi Nandurbarkar, John Ryu

• Feature Overlap: |features(𝑠)∩features(𝑝) |
|features(𝑝) | , where 𝑠 is the track

and 𝑝 is the playlist.

4.2 Hybrid Retriever
This single-stage approach combines complementary retrieval sig-
nals through linear interpolation. We define four scoring compo-
nents:

(1) Lexical Matching: Dirichlet query likelihood scoreQL (𝑠 | 𝑝).
(2) Dense Retrieval: Using all-MiniLM-L6-v2 to encode titles

and track text into dense vectors with retrieval via FAISS.
(3) Feature-BasedMatching: Using annotated playlist features,

we compute TF-IDF similarity normalized by feature diversity:

scorefeat (𝑠 | 𝑝) = 𝑙𝑜𝑔
1

|features(𝑠) |
∑︁

𝑓 ∈features(𝑝)
tfidf(𝑓 , 𝑠) .

(4) Co-occurrence Score: For the top-1000 tracks from lexical
retrieval, we compute pairwise co-occurrence frequency. For track
𝑠 , we aggregate co-occurrence counts with all other highly-ranked
tracks.

The final hybrid score normalizes each component to [0, 1] and
combines them via weighted interpolation:

scorehybrid (𝑠 | 𝑝) =
4∑︁

𝑖=1
𝜆𝑖 · score𝑖 (𝑠 | 𝑝),

4∑︁
𝑖=1

𝜆𝑖 = 1,

where score𝑖 denotes the normalized score for component 𝑖 and 𝜆𝑖
are interpolation weights.

4.3 Transfer-Based Initialization
This novel approach addresses the cold-start problem by first re-
trieving similar playlists, then leveraging their tracks to initialize
candidate selection.

Stage 1: Playlist Retrieval. We retrieve the top-𝑁 playlists
most similar to query title 𝑝 using weighted matrix factorization
on the vocabulary space, derived from both playlist titles and track
names, explained further in 5.1.3:

𝑃sim = arg max
𝑃 ∈Ptrain

u⊤𝑝𝑞u𝑃 ,

where u𝑝𝑞 and u𝑃 are latent representations of the query playlist
title and a training playlist title respectively.

Stage 2: Track Retrieval via Transfer. From each retrieved
playlist 𝑃𝑖 ∈ 𝑃sim, we randomly sample𝑚 tracks to form a transfer
set T = {𝑠1, 𝑠2, . . . , 𝑠𝑁 ·𝑚}. We compute an aggregate track repre-
sentation via unweighted averaging:

v̄ =
1
|T |

∑︁
𝑠𝑖 ∈T

v𝑠𝑖 ,

where v𝑠𝑖 is the latent embedding of track 𝑠𝑖 derived from the
term-frequency matrix 𝑅 ∈ R(|𝑇 |+|𝑃 |)× |𝑉 | . The scoring function is
𝑠𝑐𝑜𝑟𝑒 (𝑠, 𝑣) = v̄⊤u𝑠 , where v̄ and u𝑠 represents the averaged embed-
ding and track in the shared latent space. The construction of the
term-matrix is explained further in 5.1.3.

5 Experiments
5.0.1 Dataset. We conduct our experiments using theMillion Playlist
Dataset (MPD) [6]. Due to computational constraints, we use a sam-
ple of the dataset rather than the full corpus. From the original

collection, we randomly sample 100,000 playlists and partition them
into training, validation, and test splits comprising 70,000, 10,000,
and 20,000 playlists, respectively. As the MPD does not include a
predefined test set and the original challenge set used in the RecSys
competition is no longer available and unmaintained, we adopt
the common practice among prior studies of constructing our own
evaluation splits. Consequently, all reported results and analyses
are based on this sampled subset.

Our sampled subset maintains the same average playlist length
(≈ 66 tracks per playlist) as the full dataset, thereby preserving the
statistical properties relevant for retrieval evaluation. Across all
splits, the sample contains 682,944 unique tracks and a vocabulary
size of 181,782, derived from both playlist titles and track names.

5.0.2 Evaluation. We evaluate generated playlists by treating the
original playlist tracks as the ground-truth relevant set. For each
test playlist 𝑝 , we use its contents as the relevance judgments (qrels).
We adopt the partial credit scheme introduced in [6], which assigns
a graded relevance score:

rel(𝑠, 𝑝) =


1.0 if 𝑠 ∈ 𝑝 (exact track match)
0.25 if artist(𝑠) ∈ {artist(𝑠′) : 𝑠′ ∈ 𝑝} (artist match)
0 otherwise

This scoring function captures partial relevance when a recommen-
dation matches the intended artist but not the exact track. Using
these graded relevance scores, we compute several standard re-
trieval metrics:

• Precision@k (P@5, P@10, P@100, P@R): Measures the
proportion of relevant tracks among the top-𝑘 retrieved
results, where 𝑃@𝑅 denotes R-Precision.

• Mean Reciprocal Rank (MRR): Quantifies how early the
first relevant track appears in the ranked list, averaged
across all playlists.

• Normalized Discounted Cumulative Gain (NDCG@5,
NDCG@10,NDCG@100): Evaluates ranking qualitywhile
emphasizing correct ordering among retrieved tracks.

Feature Overlap Score (FO@10). To complement exact-match
metrics, we introduce a novel evaluation measure based on feature-
level overlap. Using our GPT-5 annotated features, we measure how
well each retrieved track captures the semantic characteristics of the
query playlist. For a playlist 𝑝 with labeled features (features(𝑝))
and a retrieved track list R = {𝑠1, . . . , 𝑠𝑘 }, we define the feature
overlap for each track:

FO(𝑠𝑖 , 𝑝) =
|features(𝑠𝑖) ∩ features(𝑝) |

|features(𝑝) | ,

and compute the average across all retrieved tracks:

FO@k(𝑝) = 1
𝑘

𝑘∑︁
𝑖=1

FO(𝑠𝑖 , 𝑝) .

This metric measures the average proportion of playlist features
captured by each retrieved track. Unlike exact track matching, fea-
ture overlap captures partial relevance at a semantic level. A re-
trieved track may not appear in the original playlist but still exhibit
similar genre, mood, or thematic characteristics. This provides a
more holistic evaluation particularly valuable for cold-start scenar-
ios where diverse and thematically appropriate recommendations

Cold-Start Playlist Generation on the Spotify Million Playlist Dataset

Table 1: Performance comparison of all baseline models on the test set.

P@5 P@10 P@100 P@R MRR NDCG@5 NDCG@10 NDCG@100 FO@10

Random 0.0010 0.0011 0.0011 0.0004 0.0008 0.0008 0.0008 0.0012 0.1790
BM25 0.0289 0.0296 0.0296 0.0267 0.0330 0.0260 0.0264 0.0398 0.5612
QL 0.0879 0.0820 0.0549 0.0617 0.1290 0.0852 0.0806 0.0844 0.7696
SVD 0.0073 0.0073 0.0099 0.0082 0.0070 0.0061 0.0062 0.0119 0.4953
WMF 0.0396 0.0392 0.0357 0.0343 0.0561 0.0361 0.0359 0.0516 0.8414
DPR 0.0239 0.0237 0.0181 0.0190 0.0246 0.0218 0.0216 0.0266 0.7619

Re-Ranker 0.1068 0.0982 0.0622 0.0645 0.1630 0.1042 0.0976 0.0970 0.8860
Hybrid 0.1018 0.0952 0.0609 0.0638 0.1449 0.0987 0.0938 0.0949 0.8348
Transfer-Based 0.0890 0.0834 0.0553 0.0548 0.1429 0.0851 0.0810 0.0825 0.9384

are desirable. A combined metric incorporating both exact match
(e.g., NDCG) and feature overlap offers a comprehensive evaluation
framework for future studies.

5.1 Baseline Models
5.1.1 Random Ranking. This baseline retrieves tracks uniformly
at random from the corpus, serving as a performance lower bound.

5.1.2 Lexical Retrieval Baselines. We implement two classical text-
based retrieval models using an inverted index over extended track
representations (track metadata concatenated with training playlist
titles):

Dirichlet Prior Language Model:

𝑝 (𝑤 | 𝜃𝑑) =
|𝑑 |𝑝MLE (𝑤 | 𝑑)

|𝑑 | + 𝜇
+ 𝜇𝑝MLE (𝑤 | 𝐶)

|𝑑 | + 𝜇
.

BM25:

BM25(𝑞, 𝑑) =
∑︁

𝑡 ∈𝑞∩𝑑
log(𝐼𝐷𝐹 (𝑡)) · (𝑘1 + 1) tf(𝑡, 𝑑)

𝑘1

(
(1 − 𝑏) + 𝑏

|𝑑 |
avgdl

)
+ tf(𝑡, 𝑑)

.

5.1.3 Matrix Factorization Baselines. Following [4], we construct
a term-frequency matrix 𝑅 ∈ R(|𝑇 |+|𝑃 |)× |𝑉 | where rows represent
tracks and playlists, columns represent vocabulary terms, and en-
tries indicate (i) how many playlists containing word 𝑤 include
track 𝑠 , or (ii) term frequency of 𝑤 in playlist title 𝑝 . We define
scoring for track as: 𝑠𝑐𝑜𝑟𝑒 (𝑠, 𝑝) = u⊤𝑝𝑞u𝑠 , where u𝑝𝑞 and u𝑠 repre-
sents the query and track in the shared latent space. We apply two
factorization methods:

SVD: Singular value decomposition via scikit-learn, project-
ing tracks and playlists into a shared latent space.

Weighted Matrix Factorization (WMF): Factorized by train-
ing to minimize errors in the reconstructed matrix.

5.2 Experimental Setup
For our experiments, we coded all the models, programs, and evalu-
ation ourselves, relying on implementations from homeworks, and
our previous milestones.

Pre-processing. For all text pre-processing we used NLTK word
tokenizer, and lower cased tokens.

Baseline Hyperparameters. For Dirichlet smoothing, we set
𝜇 = 2000 to combat vocabulary sparseness. For BM25, we use
𝑘1 = 1.2 and 𝑏 = 0.75. Both matrix factorization models (SVD

and WMF) employ a latent dimensionality of 𝑑 = 200. The WMF
model trains for 50 iterations with L2 regularization 𝜆 = 0.01 and
confidence parameter 𝛼 = 30.

Multi-StageRe-ranker.We construct training data usingDirich-
let baseline top-1,000 rankings as negatives, randomly sampling
40 negative examples per query. The XGBoost re-ranker is trained
with listwise loss using the rank:ndcg objective.

Hybrid Retriever. We fine-tune the all-MiniLM-L6-v2 encoder
using in-batch negative sampling following the DPR approach [2],
with 20 hard negatives per query for 10 epochs. The final hybrid
model combines four components with linear interpolation weights:
𝜆lex = 0.4 (Dirichlet with 𝜇 = 2000), 𝜆dense = 0.3 (fine-tuned DPR),
𝜆cooc = 0.15 (co-occurrence), and 𝜆feat = 0.15 (feature overlap). The
retrieval performance of the fine-tuned DPR is reported as DPR in
1 as another baseline.

Transfer-Based.We used top-20 playlists retrieved with WMF
as the seed playlists, and randomly sampled 2 songs from each
playlist to create the average track embedding.

6 Results
6.1 Results and Analysis
Table 1 presents the performance of all baseline and proposed mod-
els on the test set. We observe several notable trends across both
traditional baselines and our proposed architectures.

6.1.1 Baseline Performance. Among the baselinemodels, theDirich-
let prior language model (QL) achieves the strongest performance
acrossmostmetrics, with P@5 of 0.0879,MRR of 0.1290, andNDCG@10
of 0.0806, and WMF achieving the strongest FO@10 of 0.8414. The
performance of the Dirichlet baseline is somewhat surprising given
the simplicity of the approach, but can be attributed to the smooth-
ing capabilities of the Dirichlet prior, which proves particularly
effective in handling the sparse vocabulary inherent to our dataset.
The vocabulary-based representations suffer from extreme sparsity
with 181,782 unique terms distributed across 682,944 tracks, making
proper smoothing essential for reliable retrieval.

BM25 performs substantially worse than QL, suggesting that its
term saturation mechanism is less suited to this sparse setting than
Dirichlet smoothing. Among the collaborative filtering baselines,
WMF outperforms SVD, likely due to its ability to perform the
factorization more effectively with the weights. The fine-tuned
DPR baseline yields surprisingly modest results, performing below

Ozel Yilmazel, Samuel Lerner, Javin Mendiratta, Rishi Nandurbarkar, John Ryu

even BM25. We attribute this to the limited contextual information
available in short track metadata and playlist titles, which limits
the model’s ability to learn meaningful semantic embeddings in
this domain.

6.1.2 Proposed Model Performance. Our proposed models achieve
substantial improvements over the baselines. The Re-Ranker model
attains the highest performance across most exact-match metrics,
with P@5 of 0.1068, MRR of 0.1630, and NDCG@10 of 0.0976, rep-
resenting a 21.5% relative improvement in P@5 and 26.4% improve-
ment in MRR over the best baseline (QL). This demonstrates that
the multi-stage pipeline effectively combines complementary sig-
nals: the initial QL retrieval provides strong lexical matching, while
the learned re-ranker successfully integrates collaborative filtering
scores (WMF, SVD), popularity signals, and feature overlap to refine
the ranking.

The Hybrid retriever achieves remarkably competitive perfor-
mance (P@5 of 0.1018, MRR of 0.1449, NDCG@10 of 0.0938), closely
trailing the Re-Ranker while offering significant practical advan-
tages. As a single-stage model with little supervised training re-
quired for fine-tuning DPR, Hybrid eliminates the computational
overhead and training complexity of the two-stage pipeline. Sim-
ple linear interpolation of lexical, dense, feature-based, and co-
occurrence scores performs nearly as well as a learned re-ranker,
suggesting that straightforward signal combination is effective in
this domain. Notably, the Hybridmodel’s P@5 of 0.1018 represents a
326% relative improvement over the zero-shot DPR baseline (0.0239),
highlighting the importance of combining dense retrieval with com-
plementary signals rather than relying on dense representations
alone.

The Transfer-Based Initialization approach achieves competitive
exact-match performance, performing comparably to the QL base-
line while using a fundamentally different retrieval strategy. Most
notably, this approach achieves the highest feature overlap score
of 0.9383, substantially outperforming all other models including
the Re-Ranker (0.8860). This indicates that retrieving tracks from
similar playlists captures rich semantic information about genre,
mood, and thematic coherence. While the Transfer-Based model
does not achieve the highest exact-match scores, its superior fea-
ture alignment suggests that thematically similar tracks occur in
thematically similar playlists. This represents a promising direction
for future exploration, particularly in cold-start scenarios where
semantic diversity may be more valuable than exact matching.

7 Member Contribution
All members contributed to forming the research question and the
accompanying report. Main approaches and baselines were decided
on collectively as a team.

7.0.1 Ozel Yilmazel. Implemented helper functions to process the
dataset, build the inverted index, and the evaluation code. Devel-
oped baseline models, BM25, QL, SVD, WMF. Created the annota-
tions for playlist features using GPT-5. Led the development of the
Re-Ranker model and Hybrid model, also fine-tuning the DPR.

7.0.2 John Ryu, Samuel Lerner, Rishi Nandurbarkar, Javin Mendi-
ratta. Developed baseline models for WMF. Condensed data file for
training dataset. Co-developed the Transfer-Based Retrieval Model.

8 Miscellaneous
Repository is available here: https://github.com/oz03-hub/spotify-
final

References
[1] Sebastiano Antenucci, Simone Boglio, Emanuele Chioso, Ervin Dervishaj, Shuwen

Kang, Tommaso Scarlatti, and Maurizio Ferrari Dacrema. 2020. Artist-driven lay-
ering and user’s behaviour impact on recommendations in a playlist continuation
scenario. CoRR abs/2010.06233 (2020). arXiv:2010.06233 https://arxiv.org/abs/
2010.06233

[2] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. arXiv:2004.04906 [cs.CL] https://arxiv.org/abs/
2004.04906

[3] Vasiliy Rubtsov,Mikhail Kamenshchikov, Ilya Valyaev, Vasiliy Leksin, andDmitry I.
Ignatov. 2018. A hybrid two-stage recommender system for automatic playlist
continuation. In Proceedings of the ACM Recommender Systems Challenge 2018
(Vancouver, BC, Canada) (RecSys Challenge ’18). Association for Computing Ma-
chinery, New York, NY, USA, Article 16, 4 pages. doi:10.1145/3267471.3267488

[4] Maksims Volkovs, Himanshu Rai, Zhaoyue Cheng, Ga Wu, Yichao Lu, and Scott
Sanner. 2018. Two-stage Model for Automatic Playlist Continuation at Scale. In
Proceedings of the ACM Recommender Systems Challenge 2018 (Vancouver, BC,
Canada) (RecSys Challenge ’18). Association for Computing Machinery, New York,
NY, USA, Article 9, 6 pages. doi:10.1145/3267471.3267480

[5] Hojin Yang, Yoonki Jeong, Minjin Choi, and Jongwuk Lee. 2018. MMCF: Multi-
modal Collaborative Filtering for Automatic Playlist Continuation. In Proceedings
of the ACM Recommender Systems Challenge 2018 (Vancouver, BC, Canada) (RecSys
Challenge ’18). Association for Computing Machinery, New York, NY, USA, Article
11, 6 pages. doi:10.1145/3267471.3267482

[6] Hamed Zamani, Markus Schedl, Paul Lamere, and Ching-Wei Chen. 2018. An
Analysis of Approaches Taken in the ACM RecSys Challenge 2018 for Automatic
Music Playlist Continuation. CoRR abs/1810.01520 (2018). arXiv:1810.01520
http://arxiv.org/abs/1810.01520

[7] Lin Zhu, Bowen He, Mengxin Ji, Cheng Ju, and Yihong Chen. 2018. Automatic
Music Playlist Continuation via Neighbor-based Collaborative Filtering and Dis-
criminative Reweighting/Reranking. In Proceedings of the ACM Recommender
Systems Challenge 2018 (Vancouver, BC, Canada) (RecSys Challenge ’18). As-
sociation for Computing Machinery, New York, NY, USA, Article 10, 6 pages.
doi:10.1145/3267471.3267481

https://github.com/oz03-hub/spotify-final
https://github.com/oz03-hub/spotify-final
https://arxiv.org/abs/2010.06233
https://arxiv.org/abs/2010.06233
https://arxiv.org/abs/2010.06233
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2004.04906
https://doi.org/10.1145/3267471.3267488
https://doi.org/10.1145/3267471.3267480
https://doi.org/10.1145/3267471.3267482
https://arxiv.org/abs/1810.01520
http://arxiv.org/abs/1810.01520
https://doi.org/10.1145/3267471.3267481

	1 Abstract
	2 Related Work
	3 Problem Statement
	4 Proposed Approach
	4.1 Multi-Stage Re-ranker
	4.2 Hybrid Retriever
	4.3 Transfer-Based Initialization

	5 Experiments
	5.1 Baseline Models
	5.2 Experimental Setup

	6 Results
	6.1 Results and Analysis

	7 Member Contribution
	8 Miscellaneous
	References

